

Dimensionality-Driven Learning with Noisy Labels

Xingjun Ma^{*1}, Yisen Wang^{*2}, Michael E. Houle³, Shuo Zhou¹, Sarah M. Erfani¹, Shu-Tao Xia, Sudanthi Wijewickrema¹, James Bailey¹ (* Equal Contribution)

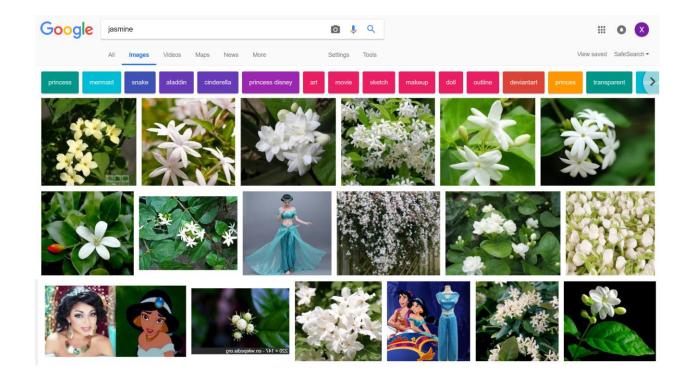
> ¹The University of Melbourne; ²Tsinghua University; ³National Institute of Informatics, Japan

Purpose of this paper:

- Investigating learning behaviours of deep neural networks (DNNs) on data with noisy (incorrect) labels.
- Exploring learning strategies that can robustly train DNNs on data with noisy labels.

Noisy label learning:

- Large-scale annotated datasets are important for deep learning.
- Data labelling can be costly, timeconsuming and error-prone.
- Webly-searched and crowd-sourcing annotated data often contain noisy labels.



THE UNIVERSITY OF MELBOURNE

Related work:

- Understanding learning behaviours of DNNs
 - Zhang et al. 2017
 - DNNs overfit to random labels, by case-by-case memorization.
 - Krueger et al. 2017
 - DNNs exhibit different styles on clean vs noisy labels, and they do not learn by memorization.
 - Arpit et al. 2017
 - DNNs learn by: 1) simple pattern learning, then 2) label memorization.

Related work:

- DNNs and noisy label learning
 - Probabilistic modelling of label noise: Larsen et al. 1998, Natarajan et al. 2013, Sukhbaatar et al. 2014
 - Label inferring or propagation: Xiao et al. 2015, Vahdat 2017, Veit et al. 2017, Li et al. 2017.
 - Loss correction: Patrini et al. 2017, Sukhbaatar et al. 2014, Goldberger et al. 2017, Reed et al. 2014.
 - Sample reweighting (ICML 2018): Jiang et al. 2018, Ren et al. 2018.
 - Contrastive learning (CVPR 2018): Wang et al. 2018.

Challenges of noisy label learning:

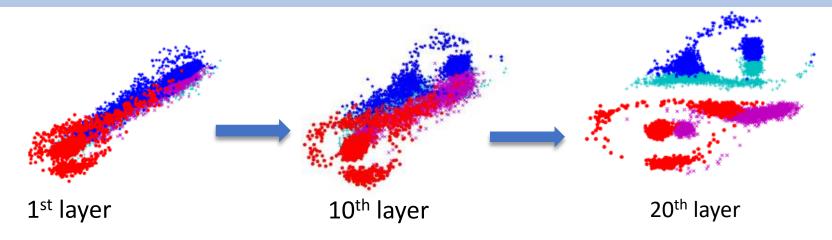
- Difficult to determine whether or not the learning process is noisy.
- Difficult to train DNNs of good generalization with noisy labels.

Our contributions:

- We identify two distinctive learning behaviours of DNN throughout training:
 - a. Clean labels: dimensionality compression;
 - b. Noisy labels: dimensionality shift, from compression to expansion.
- We propose Dimensionality-Driven Learning (D2L) to avoid dimensionality expansion, so as to avoid overfitting to noisy labels.

Dimensionality of DNN feature spaces:

We investigate the relation between dimensionality and noisy label overfitting.



Our Intuition:

If learning is a compression/fitting process, then

- a) clean classes of data can be easily compressed to simpler manifold with lower intrinsic dimensionality;
- b) noisy classes of data are hard to compress.

Local Intrinsic Dimensionality (LID):

Definition (Local Intrinsic Dimensionality)

Given a data sample $x \in X$, let r > 0 be a random variable denoting the distance from x to other data samples. The *local intrinsic dimension* of x at distance r is

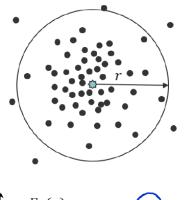
$$\mathrm{LID}_{F}(r) \triangleq \lim_{\epsilon \to 0^{+}} \frac{\ln(F((1+\epsilon) \cdot r)/F(r))}{\ln(1+\epsilon)} = \frac{r \cdot F'(r)}{F(r)}$$

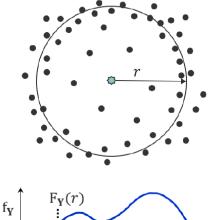
wherever the limit exists.

• F(r): **cdf** of the distribution of distances to data from a given reference location.

F(r)

• $LID_F(r)$: measures growth rate of F(r) as the radius r expands (*Houle 2017a*).





THE UNIVERSITY OF MELBOURNE

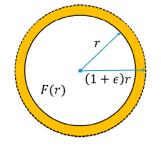
Estimation of LID:

Estimators of LID already available:

• Hill (MLE) estimator (*Hill 1975, Amsaleg et al. 2015*):

$$\widehat{\text{LID}}(x) = -\left(\frac{1}{k}\sum_{i=1}^{k}\log\frac{r_i(x)}{r_k(x)}\right)^{-1}$$

 r_i is the distance of x to its i^{th} nearest neighbour.



f(r)

X = d(q, u)

F(r)

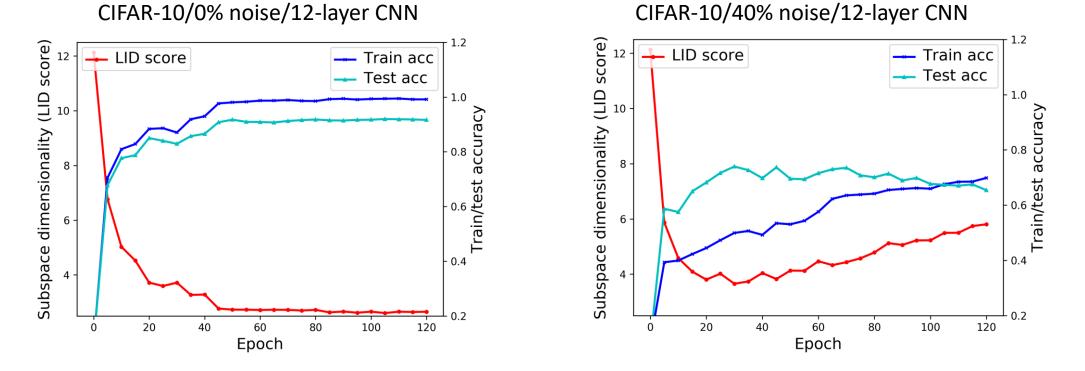
Thirty-fifth International Conference of Machine Learning

- Nearest neighbor distances are extreme events.
- Lower tail distribution follows Generalized Pareto Distribution (GPD).

)

• Other estimators: e.g. Amsaleg et al. 2015, Levina & Bickel 2005.

Learning with clean vs noisy labels (CIFAR-10):



Clean labels: decreasing subspace dimensionality: compression.
Noisy Labels: dimensionality shift from compression to expansion.
Dimensionality expansion indicates overfitting to noisy labels.

Dimensionality-Driven Learning (D2L):

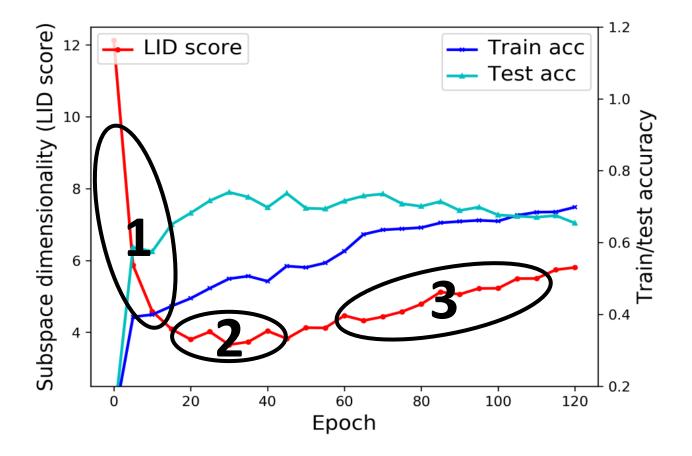
We avoid dimensionality expansion phase by using LID-adapted labels.

- Our proposed loss function kicks in only after dimensional shift to expansion has been detected.
- Our observation: The higher the dimensionality, the more noisy the labels.
- Original labels should not be fully trusted.

$$\mathcal{L} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{y_n^*} y_n^* \log P(y_n^* | x_n), \quad y^* = \alpha_i y + (1 - \alpha_i) \hat{y}, \quad \alpha_i = \exp(-\lambda \frac{\widehat{\text{LID}_i}}{\min_j^{i-1} \widehat{\text{LID}_j}})$$

- $\circ y_n^*$: blending of original (y) and predicted (\hat{y}) label values.
- $\circ \alpha_i$: LID-based weighting for the label interpolation.
- $\widehat{\text{LID}_i}$: average of LID scores over 10 batches, at i^{th} epoch.
- $\lambda = i/T$: training progress (*T*: total number of epochs).

Work flow of D2L:



- Early stage of compression: rely on raw labels.
- 2. Turing point: dimensionality shift from **compression** to **expansion**.
- Later stage of dimensionality expansion: rely on predicted labels.

Empirical evaluation of D2L:

• Setting:

A 12-layer CNN on CIFAR-10 with 40%/60% random label noise, SGD trained for 120 epochs.

• Compared training strategies:

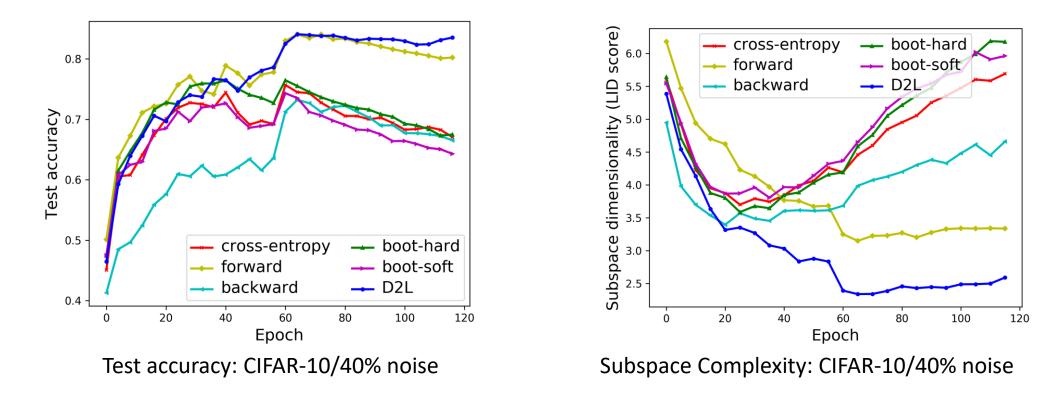
- a) Backward/Forward (Patrini et al. 2017).
- b) Boot-hard/Boot-soft (Reed et al. 2014).
- c) Cross entropy (standard definition).
- Understand different training methods from 3 viewpoints:
 - a) Dimensional complexity of the learned subspaces (measured by average LID score).
 - b) Complexity of the learned hypothesis (measured by Critical Sample Ratio, Arpit et al. 2017).
 - c) Quality of learned representation (by visualization).

Thirty-fifth International Conference or Machine Learning

ICML

2018

Empirical evaluation of D2L – subspace dimensionality:



D2L learns simpler subspaces with better test accuracy.

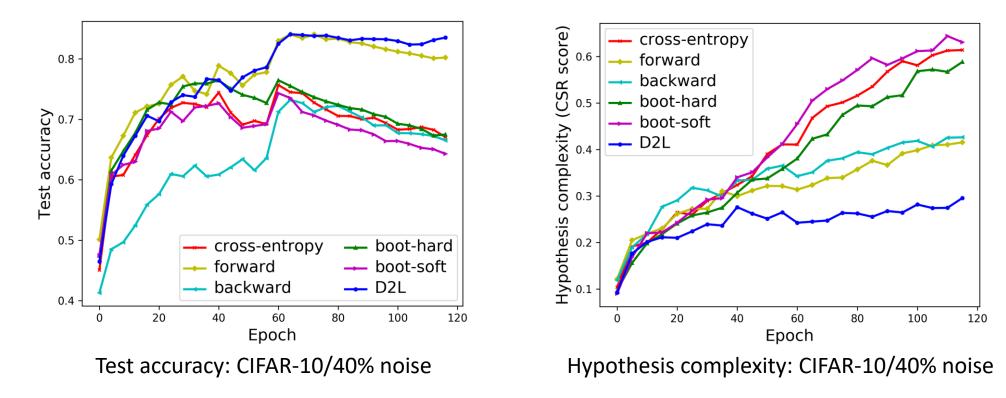
Empirical evaluation of D2L – hypothesis complexity:

2018

ICML

Thirty-fifth International Conference or

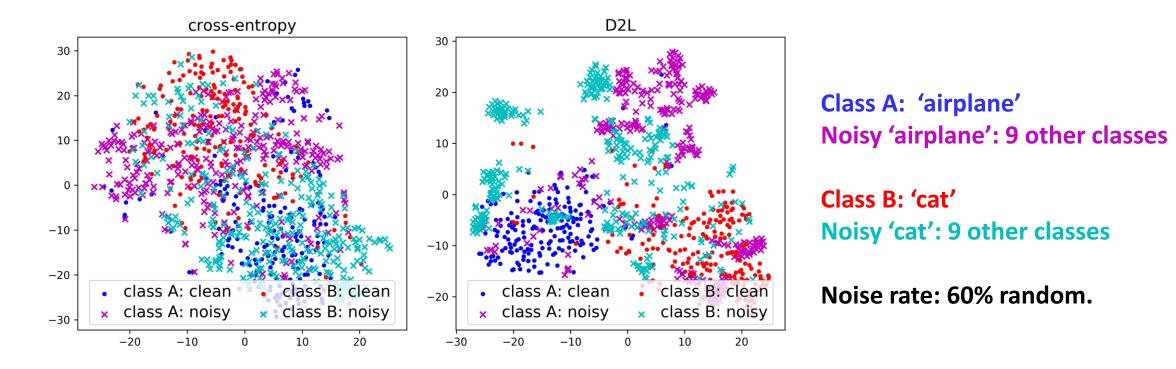
Machine Learning



D2L learns simpler hypothesis.

□ The Critical Sample Ratio (Arpit et al. 2017) also indicates adversarial robustness.

Empirical evaluation of D2L – representation:



D2L learns more fragmented representation, globally scattered, locally clustered.
Small scattered clusters indicate noisy samples from 9 different classes.

Robustness to noisy labels:

Table 1: Test accuracy (%) \pm std on MNIST, SVHN, CIFAR-10 and CIFAR-100.

Dataset / Noise Rate		cross-entropy	forward	backward	boot-hard	boot-soft	D2L
MNIST	0%	99.24±0.0	99.30±0.0	99.23±0.1	99.13±0.2	99.20 ± 0.0	99.28 ± 0.0
	20%	82.66 ± 1.8	96.45 ± 0.4	84.69 ± 1.2	80.69 ± 2.2	83.50 ± 1.2	$98.84{\pm}0.0$
	40%	60.14 ± 3.9	$88.90 {\pm} 0.9$	64.89 ± 1.0	60.49 ± 1.6	59.19 ± 1.8	98.49±0.0
	60%	38.51 ± 3.7	72.88 ± 1.6	42.83 ± 3.3	40.45 ± 1.6	39.04 ± 3.0	94.73±1.2
SVHN	0%	90.12±0.3	90.22 ± 0.1	90.16 ± 0.2	89.47±0.0	89.26 ± 0.0	90.32±0.0
	20%	76.10 ± 0.9	85.51 ± 0.7	74.61 ± 0.5	76.10 ± 0.3	75.26 ± 0.2	$87.63{\pm}0.1$
	40%	57.92 ± 1.4	74.09 ± 0.7	59.15 ± 0.8	58.25 ± 0.2	58.30 ± 0.3	$84.68 {\pm} 0.6$
	60%	36.54 ± 0.62	60.57 ± 0.6	50.54 ± 0.7	42.51 ± 1.2	37.21 ± 0.9	$80.92{\pm}0.8$
CIFAR-10	0%	90.39±0.6	90.27±0.0	89.03±1.2	89.06 ± 0.9	89.46 ± 0.6	89.41±0.2
	20%	73.12 ± 1.3	84.61 ± 0.3	79.41 ± 0.1	$79.19 {\pm} 0.4$	82.21 ± 0.4	85.13±0.6
	40%	65.07 ± 3.3	$81.84 {\pm} 0.1$	74.69 ± 1.3	76.67 ± 0.8	75.81 ± 0.3	83.36±0.5
	60%	52.55 ± 1.6	72.41 ± 0.7	40.42 ± 0.4	70.57 ± 0.3	68.32 ± 0.6	$72.84{\pm}0.6$
CIFAR-100	0%	68.20 ± 0.4	68.54 ± 0.1	68.48 ± 0.2	68.31±0.2	67.89 ± 0.2	68.60±0.3
	20%	52.88 ± 0.5	60.25 ± 0.2	58.74 ± 0.3	58.49 ± 0.4	57.32 ± 1.1	$62.20{\pm}0.5$
	40%	42.85 ± 0.3	51.27 ± 0.3	45.42 ± 0.6	$46.44 {\pm} 0.7$	45.77 ± 1.1	$53.01{\pm}0.7$
	60%	30.09 ± 0.2	44.22 ± 0.7	34.49 ± 1.1	42.65 ± 0.9	40.29 ± 1.2	$45.21 {\pm} 0.4$

D2L demonstrated strong performance for different noise rates.

Conclusion:

- □ We identify distinctive DNN learning behaviours on clean *vs* noisy labels.
- □ Subspace dimensionality expansion is associated with overfitting to noisy labels.
- D2L can learn low-dimensional subspaces, simpler hypotheses and high-quality representations.

Future work:

- Different theoretical formulations of subspace dimensionality.
- Explore D2L on other forms of noise, other network architectures.
- Investigation of the effects of data augmentation and regularization techniques such as batch normalization and dropout.

References:

[1] Michael E. Houle. Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications. In SISAP, pp. 64–79, 2017a.

[2] Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E. Houle, Ken-ichi Kawarabayashi, and Michael Nett. Estimating local intrinsic dimensionality. In SIGKDD, pp.29–38. ACM, 2015.

[3] Patrini, Giorgio, Rozza, Alessandro, Menon, Aditya, Nock, Richard, and Qu, Lizhen. Making neural networks robust to label noise: a loss correction approach. In CVPR, 2017.

[4]Reed, Scott, Lee, Honglak, Anguelov, Dragomir, Szegedy, Christian, Erhan, Dumitru, and Rabinovich, Andrew. Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596, 2014.

[5] Xiao, Tong, Xia, Tian, Yang, Yi, Huang, Chang, and Wang, Xiaogang. Learning from massive noisy labeled data for image classification. In CVPR, 2015.

[6] Veit, Andreas, Alldrin, Neil, Chechik, Gal, Krasin, Ivan, Gupta, Abhinav, and Belongie, Serge. Learning from noisy large-scale datasets with minimal supervision. In CVPR, 2017.

[7] Vahdat, Arash. Toward robustness against label noise in training deep discriminative neural networks. In NIPS, 2017.

[8] Sukhbaatar, Sainbayar and Fergus, Rob. Learning from noisy labels with deep neural networks. arXiv:1406.2080, 2(3):4, 2014.

[9] Wang, Yisen, Liu, Weiyang, Ma, Xingjun, Bailey, James, Zha, Hongyuan, Song, Le, and Xia, Shu-Tao. Iterative learning with open-set noisy labels. In CVPR, 2018.

[10] Shwartz-Ziv, Ravid and Tishby, Naftali. Opening the black box of deep neural networks via information. arXiv:1703.00810, 2017.

Thank you!

Poster: this afternoon. Thu Jul **12th** 06:15 -- 09:00 PM