

Adversarial Generation of Real-time Feedback with Neural Networks for Simulation-based Training

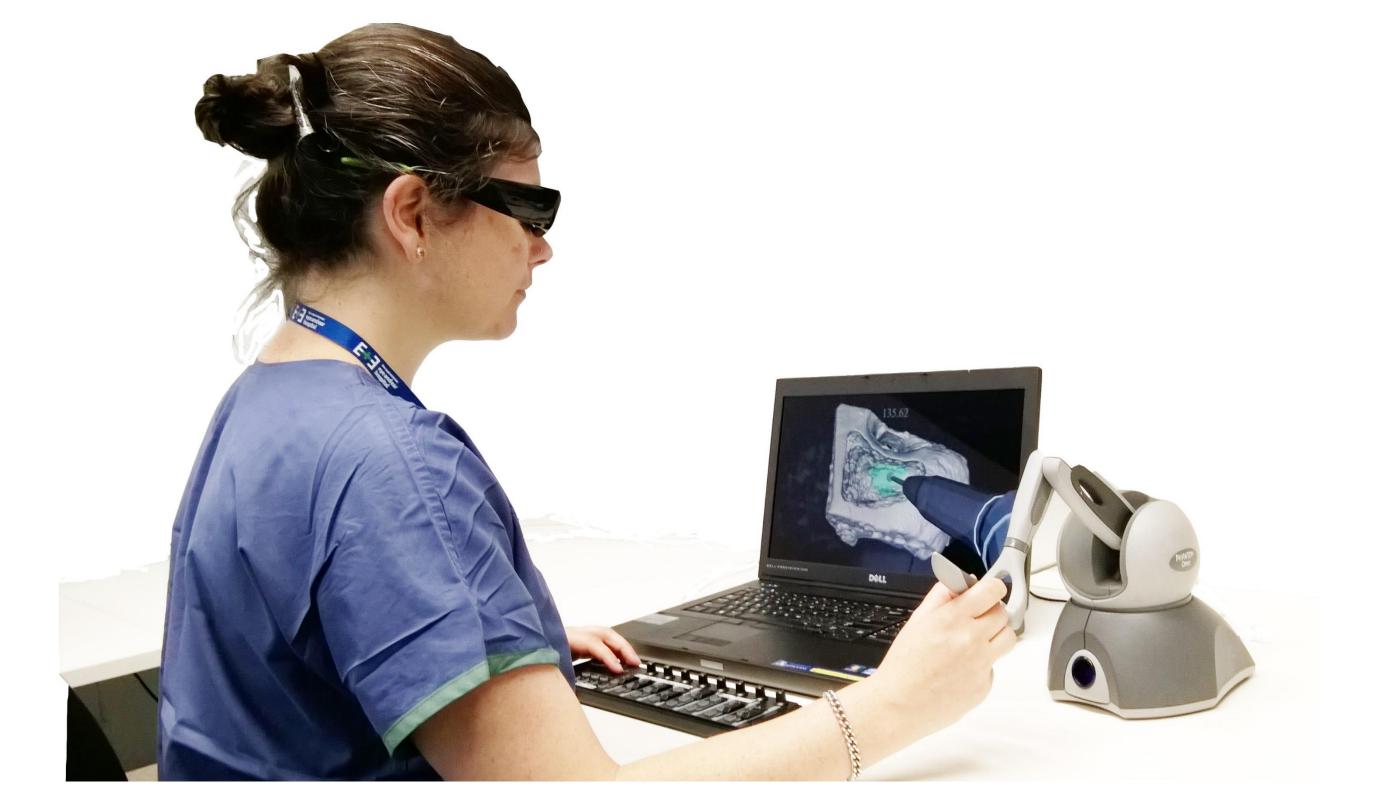
Xingjun Ma, Sudanthi Wijewickrema, Shuo Zhou, Yun Zhou, Zakaria Mhammedi, Stephen O'Leary, James Bailey
xingjunm@student.unimelb.edu.au

School of Computing and Information Systems, The University of Melbourne

Introduction

Neural Network Feedback

- Virtual Reality (VR) provides a risk-free, low-cost and convenient training platform for many application domains.
- Real-time performance feedback is essential in such training in order to facilitate efficient task/knowledge learning.
- Here, we use the adversarial technique in neural networks to generate feedback in VR temporal bone surgery.



- Step 1: Pre-train a neural network classifier offline with loss $J_{\Theta}(x, y)$, via supervised learning.
- Step 2: For a real-time novice skill vector x_0 and a target (expert) skill level y^* , adversarially perturb x_0 iteratively:

$$x = x_{0}$$

$$x = x - \varepsilon S_{x} (xS_{x} - \frac{a}{2}(1 + S_{x}) + \frac{b}{2}(1 - S_{x}))$$

$$S_{x} = \operatorname{sign}(\nabla_{x} (J_{\Theta}(x, y^{*}) + \lambda ||x - x_{0}||_{1}))$$

- Step 3: clip away small changes and generate feedback: $A: x_0 \rightarrow x$
- **Step 4:** Deliver *feedback* to trainee in the form of audio instructions in order to enhance performance.

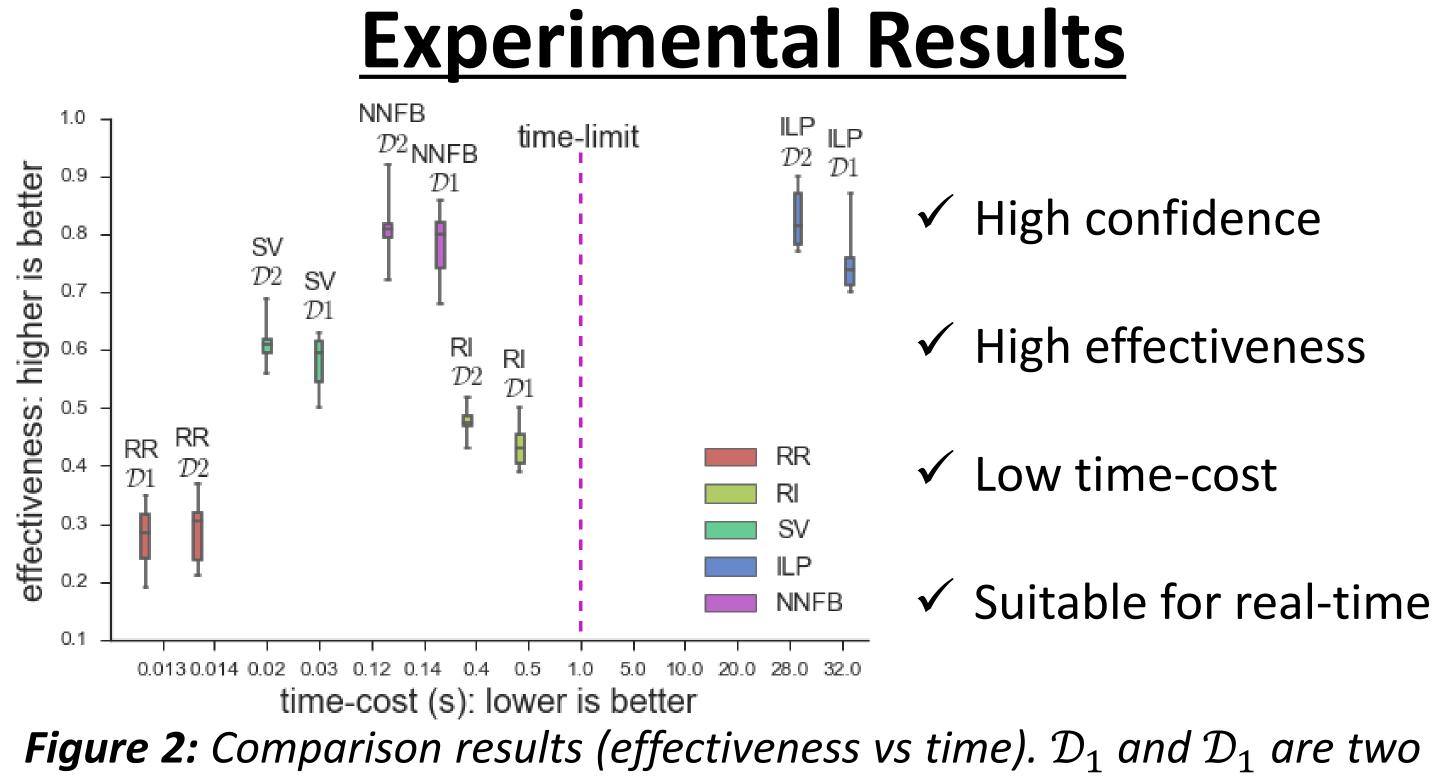


Figure 1: The University of Melbourne Virtual Reality Temporal Bone Surgery Simulator: it consists of a computer that runs a 3D model of a human temporal (ear) bone and a haptic device that provides tactile resistance to simulate drilling.

Feedback Generation Problem

• Given a neural network N(x) and a novice instance x_0 , the problem is to find the optimal action $A: x_0 \rightarrow x$ that changes x_0 to an instance x under limited cost C such that x has the highest probability of being in the expert class:

argmax N(x), subject to $loss(x_0, x) < C$ where, feedback $A: x_0 \rightarrow x$ involves one or more feature changes (increase/decrease).

- For example, the action A: (force = 0.2, speed = 0.3) → (force = 0.5, speed = 0.3) translates to the feedback
 "increase force to 0.5".
- In VR training, the number of feature changes should be

datasets. NNFB is the proposed method.

	•			•	-		
		NN	RF	LR	SVM	NB	KNN
$\mathcal{D}1$	RR	$0.19{\pm}0.06$	0.23±0.10	$0.35{\pm}0.07$	$0.27{\pm}0.06$	$0.32{\pm}0.12$	$0.30 {\pm} 0.05$
	RI	$0.44{\pm}0.07$	$0.39{\pm}0.04$	$0.50{\pm}0.08$	$0.46{\pm}0.06$	$0.42{\pm}0.12$	$0.40{\pm}0.08$
	SV	$0.63 {\pm} 0.07$	$0.59{\pm}0.06$	$0.60{\pm}0.07$	$0.62{\pm}0.06$	$0.50{\pm}0.11$	$0.53 {\pm} 0.07$
	ILP	$0.72 {\pm} 0.04$	0.87±0.00	$0.71 {\pm} 0.05$	$0.76 {\pm} 0.04$	0.70±0.11	0.76±0.04
	NNFB	0.86±0.01	$0.82{\pm}0.08$	0.78±0.05	$0.82{\pm}0.04$	$0.68 {\pm} 0.14$	$0.73 {\pm} 0.08$
$\mathcal{D}2$	RR	0.21 ± 0.04	$0.22 {\pm} 0.07$	$0.29 {\pm} 0.04$	$0.37{\pm}0.02$	$0.32{\pm}0.11$	$0.32{\pm}0.06$
	RI	$0.48{\pm}0.04$	$0.49 {\pm} 0.04$	$0.47 {\pm} 0.09$	$0.52{\pm}0.05$	$0.47 {\pm} 0.12$	$0.43 {\pm} 0.10$
	SV	$0.61 {\pm} 0.08$	$0.69 {\pm} 0.04$	$0.62{\pm}0.05$	$0.61 {\pm} 0.07$	$0.56 {\pm} 0.11$	$0.59 {\pm} 0.04$
	ILP	$0.88{\pm}0.04$	0.90±0.02	$0.79{\pm}0.07$	0.77±0.03	$0.78 {\pm} 0.12$	0.84±0.09
	NNFB	0.92±0.02	$0.82{\pm}0.06$	0.81±0.07	$0.72{\pm}0.05$	0.79±0.11	$0.81 {\pm} 0.07$

Conclusions

kept low to decrease cognitive load and avoid distraction: $loss(x_0, x) = ||x_0 - x||_0$

> Note: This is different to typical adversarial examples in that it targets high confidence improvements with a lesser number of perturbations.

- Adversarial perturbation can be used to generate confident expert-like feedback efficiently.
- The proposed L_0 regularization perturbation generates simple yet confident feedback.
- The proposed bounded perturbation provides flexible control over skill vectors.

IJCAI'17

ML-KBL - Knowledge-Based Learning