

Adversarial Generation of Real-time Feedback with Neural Networks for Simulation-based Training

Xingjun Ma, Sudanthi Wijewickrema, Shuo Zhou, Yun Zhou, Zakaria Mhammedi, Stephen O'Leary, James Bailey

🔗 xingjunm@student.unimelb.edu.au

School of Computing and Information Systems The University of Melbourne

> Presenter: Xingjun Ma 24 August, 2017

- 1. Background
- 2. Problem Definition
- 3. Proposed Method
- 4. Results
- 5. Conclusion

1. Background

- 2. Problem Formulation
- 3. Proposed Method
- 4. Results
- 5. Conclusion

Feedback for Virtual Reality (VR) Training – VR simulators

VR simulators have been widely used in many applications: Driver training, surgical training, pilot training, military training, ...

A VR driving simulator

A VR surgery simulator

A VR flight simulator

Feedback for VR Training – our simulator

The University of Melbourne Temporal Bone Surgery Simulator

VR platforms for training

- Benefits: low-cost, low-risk, convenient accessibility, repeatable practice, etc.
- Drawback: lack of real-time guidance -> needs automatic real-time feedback support

 \Box Feedback intervention \rightarrow effective knowledge/skill learning

Traditionally: experts, professors, experienced technician VR training: it still requires expert's supervision

Benefits of real-time interactive feedback:

- ✓ Increase learning motivation
- ✓ Improve performance
- ✓ Obtain proper skills and correct mistakes
- ✓ More importantly, improve decision making skills

Intelligent tutoring feedback? In real-time?

Is it possible that feedback is generated in real-time automatically and is expert-like?

Challenges:

- Real-time: 1 second after action performed.
- Accurate: correctly identify novice technique.
- Effective: successfully change novice technique to expert technique.
- Simplicity: one feedback only address 1 or 2 aspects of the technique.
- Transferability: similar task with different difficulties or different tasks

What is feedback?

High-level:

 Feedback is the *helpful information* presented to the trainee about his/her prior behavior which can be used to adjust improve future behaviour.

Low-level:

• *Actions* that need to be taken to improve performance.

An example of real-time feedback.

1. Background

2. Problem Formulation

- 3. Proposed Method
- 4. Results
- 5. Conclusion

Feedback Generation – preliminary

Skill Vector: how to define user behavior?

Metrics (features): 1) motion-based, 2) time-based, 3) position-based, or 4) system settings Example:

Drill speed, drill force, trajectory straightness, burr size ... in our Temporal Bone Surgical Simulator

Skill Levels: expert vs novice

Supervised learning: expert demonstrations \rightarrow expert; student demonstrations \rightarrow novice

□Goal: novice skill \rightarrow expert skill

By changing features in the skill vector.

Example:

Feedback: (force =0.2; duration = 0.3) \rightarrow (force = 0.5; duration = 0.3) is "increase force to 0.5".

Feedback Generation – preliminary

Skill Vector: how to define user behavior?

Drill speed, drill force, trajectory straightness, burr size ... in our Temporal Bone Surgical Simulator

	А	В	С	D	E	F	G	Н	I	J	К	L
1	ID	rep	duration	distance	speed	acceleration	straightness	force	endPosX	endPosY	endPosZ	class
2	1	1	1.476112366	0.036040564	0.021341626	0.014457995	0.876401567	1.020398	48	46	191	1
3	1	1	1.785606384	0.034568865	0.017681228	0.009902086	0.917845483	0.890324205	41	42	185	1
4	1	1	0.540367126	0.022240782	0.037401468	0.06921492	0.818044892	0.609978218	58	45	186	1
5	1	1	0.060180664	0.002570428	0.042215855	0.701485358	0.808216952	0.080081559	62	49	190	1
6	1	1	1.180976868	0.016865564	0.011868762	0.010049953	0.800683228	0.904218539	42	44	181	1
7	1	1	0.314849853	0.006115271	0.013830508	0.043927312	0.733340409	0.591966515	47	43	185	1
8	1	1	0.016815186	0.001828157	0.108718163	6.465475062	0.485757881	0.063195315	51	44	187	1
9	1	1	0.611213684	0.024426844	0.037614838	0.061541223	0.946833625	0.930630273	54	41	180	1
10	1	1	1.543510437	0.035317441	0.020468562	0.013261045	0.895981764	1.474808937	58	45	170	1
11	1	1	1.164131164	0.027152068	0.019438321	0.016697707	0.83653916	0.923480384	69	47	193	1
12	1	1	1.063674927	0.011296991	0.009863505	0.009273045	0.87713862	0.817530937	35	41	180	1
13	1	1	1.646224976	0.028158945	0.008764422	0.005323951	0.524442927	1.002791259	47	49	176	1
14	1	1	0.315643311	0.00885854	0.025609742	0.08113507	0.928166771	0.242328232	53	56	168	1
15	1	1	0.560897828	0.008175411	0.012080288	0.021537413	0.802242884	0.622201451	55	60	159	1
16	1	1	0.110610962	0.003005776	0.026695658	0.241347309	0.706379795	0.194428356	74	66	165	1

Feedback Generation – overview

Feedback Generation – existing methods

□ Rule-based: *fixed rules, low flexibility* "follow-me" approach: [Rhienmora et al., 2011] "step-by-step": [Wijewickrema et al., 2016]

□ Pattern-based: *representative patterns, low accuracy/effectiveness* Time series pattern: [Forestier et al., 2012] Expert/novice skill pattern: [Zhou et al., 2013a]

Prediction models: extract knowledge from trained model, marginal improvements Decision tree: [Yang et al., 2003] Random forests: [Zhou et al., 2013a; Cui et al., 2015]

Feedback Generation – existing methods

Method	Туре	Effectiveness	Transferability	Real-time
Rhienmora et al., 2011	Rule-based	V	×	V
Wijewickrema et al., 2016	Rule-based	V	×	V
Forestier et al., 2012	Pattern-based	X	V	V
Zhou et al., 2013a	Pattern-based	X	V	V
Yang et al., 2003	Decision tree based	X	V	V
Zhou et al., 2013a	Random forests based	X	V	V
Cui et al., 2015	Random forests based	V	V	X
Our model (NNFB)	Neural network based	v	v	V

Feedback Generation – problem definition

Given a prediction model N(x) and a novice instance x_0 , the problem is to find the optimal action $A: x_0 \to x$ that changes x_0 to an instance xunder limited cost C such that x has the highest probability of being in the expert class:

$$\underset{x}{\operatorname{argmax}} N(x), \text{ subject to } loss(x_0, x) < C$$

For example, the action A: (force = 0.2, speed = 0.3) \rightarrow (force = 0.5, speed = 0.3) translates to the feedback "increase force to 0.5".

 In VR training, the number of feature changes should be kept low to decrease cognitive load and avoid distraction:

$$loss(x_0, x) = ||x_0 - x||_0$$

• Efficiency: done in 1sec.

- 1. Background
- 2. Problem Formulation
- 3. Proposed Method
- 4. Results
- 5. Conclusion

Neural Network based Feedback Generation

Our Contributions:

We verified that neural network based adversarial perturbation can be a foundation for feedback.

carefully-designed noise can fool deep networks. [Szegedy et al., 2013, Goodfellow et al., 2014]

Our method (NNFB)

- The perturbation strategy is the same, but the constraints are different:
- ✓ larger perturbation (opposite to imperceptible small)
- ✓ fewer number of feature changes

The simplicity of feedback can be done by a L₁ regularization term.
 Real-world suitability can be done by a bounded adversarial update.

Neural Network based Feedback Generation

- Step 1: Pre-train a neural network classifier offline with loss $J_{\Theta}(x, y)$, via supervised learning.
- Step 2: For a real-time novice skill vector x_0 and a target (expert) skill level y^* , adversarially perturb x_0 iteratively:

$$x = x_0$$

$$x = x - \varepsilon S_x (xS_x - \frac{a}{2}(1 + S_x) + \frac{b}{2}(1 - S_x))$$

$$S_x = \operatorname{sign}(\nabla_x (J_{\Theta}(x, y^*) + \lambda ||x - x_0||_1))$$

- Step 3: clip away small changes and generate feedback: $A: x_0 \rightarrow x$
- **Step 4:** Deliver *feedback* to trainee in the form of audio instructions in order to enhance performance.

- 1. Background
- 2. Problem Formulation
- 3. Proposed Method

4. Results

5. Conclusion

Experimental Setup

Datasets: collected by temporal bone surgery simulator \mathcal{D}_1 : cortical mastoidectomy surgery \rightarrow 60K skill instances (28K expert, 32K novice) \mathcal{D}_2 : posterior tympanotomy surgery \rightarrow 14K skill instances (9K expert, 5K novice)

Compared methods: prediction model based methods

- 1. Split Voting (SV): decision tree based (Zhou et al., 2013a)
- 2. Integer Linear Programming (ILP): random forest based (Cui et al., 2015)
- 3. Random Iterative (RI): iterative approach with random forest (Cui et al., 2015)
- 4. Random Random (**RR**): random perturbation (baseline)
- 5. Neural Network based Feedback Generation (NNFB): the proposed method.

Experimental Setup

Evaluation metrics:

- 1. effectiveness: the percentage of successful improved X_0 : effectiveness = $\frac{|\{x|N(x)=expert\}|}{|\{x\}|}$
- 2. time-cost: time (in seconds) on average spent to generate one feedback for a novice instance x_0 **Description Classifiers:**

evaluation classifiers are pseudo independents experts trained on different data.

Neural Network (NN), Random Forest (RF), Logistic Regression (LR), SVM (RBF kernel), Naive Bayes (NB), KNN (K = 10)

- Step 1: Given n novice instances X_0 , apply different feedback generation methods to change $x_0 \in X_0$ to expert instance: x.
- > Step 2: Evaluate the quality of $X: \{x\}$ using 6 evaluation classifiers

Experimental Results

- ✓ Higher effectiveness
- ✓ Lower time-cost

Comparison results (effectiveness vs time). D_1 and D_2 are two datasets. **NNFB is the proposed method.**

Experimental Results

Table 1: Comparison of effectiveness (mean±std). Best results are in bold.

		NN	RF	LR	SVM	NB	KNN
	RR	0.19±0.06	0.23±0.10	$0.35{\pm}0.07$	$0.27{\pm}0.06$	$0.32{\pm}0.12$	$0.30 {\pm} 0.05$
	RI	$0.44{\pm}0.07$	$0.39{\pm}0.04$	$0.50{\pm}0.08$	$0.46{\pm}0.06$	$0.42{\pm}0.12$	$0.40{\pm}0.08$
$\mathcal{D}1$	SV	$0.63 {\pm} 0.07$	$0.59{\pm}0.06$	$0.60{\pm}0.07$	$0.62{\pm}0.06$	$0.50{\pm}0.11$	$0.53{\pm}0.07$
	ILP	$0.72{\pm}0.04$	0.87±0.00	$0.71{\pm}0.05$	$0.76{\pm}0.04$	0.70±0.11	0.76±0.04
	NNFB	0.86±0.01	$0.82{\pm}0.08$	0.78±0.05	$0.82{\pm}0.04$	$0.68{\pm}0.14$	$0.73{\pm}0.08$
	RR	0.21±0.04	$0.22{\pm}0.07$	$0.29{\pm}0.04$	$0.37 {\pm} 0.02$	$0.32{\pm}0.11$	$0.32{\pm}0.06$
	RI	$0.48 {\pm} 0.04$	$0.49{\pm}0.04$	$0.47{\pm}0.09$	$0.52{\pm}0.05$	$0.47 {\pm} 0.12$	$0.43 {\pm} 0.10$
$\mathcal{D}2$	SV	$0.61{\pm}0.08$	$0.69{\pm}0.04$	$0.62{\pm}0.05$	$0.61{\pm}0.07$	$0.56 {\pm} 0.11$	$0.59{\pm}0.04$
	ILP	$0.88 {\pm} 0.04$	0.90±0.02	$0.79{\pm}0.07$	0.77±0.03	$0.78{\pm}0.12$	0.84±0.09
	NNFB	0.92±0.02	$0.82{\pm}0.06$	0.81±0.07	$0.72{\pm}0.05$	0.79±0.11	$0.81{\pm}0.07$

NNFB achieved comparable performance to ILP and outperformed others methods across all evaluation classifiers.

Experimental Results

Increase L_1 regularization parameter λ yields simple but confident feedback.

- 1. Background
- 2. Problem Formulation
- 3. Proposed Method
- 4. Results
- 5. Conclusion

Conclusions

Adversarial perturbation with neural networks can be used to generate confident feedback efficiently.

The proposed **NNFB** method is general more effective than existing feedback generation methods while remains low time-cost.

The proposed L_1 regularization perturbation generates simple yet confident feedback.

References

[Rhienmora et al., 2011] Phattanapon Rhienmora, Peter Haddawy, Siriwan Suebnukarn, and Matthew N Dailey. Intelligent dental training simulator with objective skill assessment and feedback. Artificial intelligence in medicine, 52(2):115–121, 2011.

[Zhou et al., 2013a] Yun Zhou, James Bailey, Ioanna Ioannou, Sudanthi Wijewickrema, Gregor Kennedy, and Stephen OLeary. Constructive real time feedback for a temporal bone simulator. In MICCAI, pages 315-22. 2013.

[Zhou et al., 2013b] Yun Zhou, James Bailey, Ioanna Ioannou, Sudanthi Wijewickrema, Stephen O'Leary, and Gregor Kennedy. Pattern-based real-time feedback for a temporal bone simulator. In VRST, pages 7–16, 2013.

[Yang et al., 2003] Qiang Yang, Jie Yin, Charles X Ling, and Tielin Chen. Postprocessing decision trees to extract actionable knowledge. In ICDM, pages 685–688, 2003.

[Cui et al., 2015] Zhicheng Cui, Wenlin Chen, Yujie He, and Yixin Chen. Optimal action extraction for random forests and boosted trees. In KDD, pages 179–188, 2015.

[Szegedy et al., 2013] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv:1312.6199, 2013.

Q&A