

Providing Effective Real-time Feedback in Simulation-based Surgical Training

Xinqjun Ma² Sudanthi Wijewickrema, Yun Zhou, Shuo Zhou, Stephen O'Leary, James Bailey School of Computing and Information Systems, The University of Melbourne

Introduction

- Virtual Reality (VR) simulators are effective tools for surgical training.
- Automated real-time performance feedback is an essential part of VR based surgical training.

Challenges for feedback:

- A. Effectiveness: should improve novice skill to expert skill
- **B.** Simplicity: refers only one feature change: less distraction & cognitive load.
- C. Efficiency: provided within 1s after novice skill is performed.

Our Virtual Reality Temporal Bone Surgery Simulator: 3D simulation with haptic drilling.

Real-time Feedback Problem

- Surgical skill is defined by: drilling stroke (force, speed, duration, acceleration, straightness).
- Real-time feedback problem: find **optimal actions** to improve novice strokes detected in real-time during training:

Problem: Given a random forest classifier F(x) and a novice instance x, the problem is to find the optimal action $A: x \to x_f$ that changes x to an instance x_f with at most one feature change such that x_f has the highest probability of being in the expert class:

> argmax F(x), subject to $||x - x_f||_0 \le 1$ $A: x \rightarrow x_f$

Real-time feedback formulation process

Feedback example, action A: (force = 0.2, speed = 0.3) \rightarrow (force = 0.5, speed = 0.3) \rightarrow feedback "increase force to 0.5".

Random Forest based Feedback Formulation

Experiments

Proposed method: **Discrete Approximation (DA)**

Conclusions

- Data: 28K expert strokes vs 32K novice strokes from 7 surgeons vs 12 students.
- **DA** vs 5 other methods: Performance and Scalability

	Rand-Rand	Iter-Iter	Rand-Iter	ILP	SV	DA
success rate	0.21 ± 0.04	$0.89{\pm}0.00$	$0.36 {\pm} 0.05$	$0.89{\pm}0.00$	$0.60 {\pm} 0.05$	$0.89{\pm}0.00$
effectiveness	0.18 ± 0.23	$0.87{\pm}0.06$	$0.40 {\pm} 0.30$	$0.87{\pm}0.06$	$0.65 {\pm} 0.33$	$0.84{\pm}0.08$
time-cost (s)	$0.00{\pm}0.00$	12.17 ± 0.14	$0.36 {\pm} 0.05$	32.07 ± 2.57	$0.02 {\pm} 0.00$	$0.26 {\pm} 0.15$

✓ **DA: high** success-rate & effectiveness while **low** time-cost

100 200 300 400 500 600 700 800 900 1000 number of trees

DA scales well to large random forests \checkmark

DA balances time-cost and effectiveness with small α and γ . \checkmark

- We discussed the problem of formulating feedback and lacksquareproposed a novel method to formulate feedback using random forests.
- Random forests can be compressed to a few representative points using our discretization and approximation method.
- Our proposed method formulates highly effective feedback \bullet while remaining low time-cost, and it scales well to large random forests.

xingjunm@student.unimelb.edu.au